Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
نویسندگان
چکیده
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators. Keywords—Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions. Hendrick Maxil Zárate Rocha is with the Department of Mechanical Engineering, Federal University of Rio de Janeiro, Cidade Universitária, 21941-970 Rio de Janeiro, Brazil. Ricardo da Silva Pereira and Maria Emilia de Lima Tostes are with the Department of Electrical Engineering, Federal University of Pará, 66075-110 Belém, Pará, Brazil. Manoel Fernandes Martins Nogueira is with the Department of Mechanical Engineering, Federal University of Pará, 66075-110 Belém, Pará, Brazil. Carlos R. Pereira Belchior is with the Department of Mechanical Engineering, Federal University of Rio de Janeiro, Cidade Universitária, 21941-970 Rio de Janeiro, Brazil (e-mail: [email protected]).
منابع مشابه
Theoretical study of the effect of hydrogen addition to natural gas-fueled direct-injection engines
The preparation of air–fuel mixture is considerably dependent on fluid flow dynamics to achieve improved performance, efficiency, and engine combustion in the appearance of flow. In this study, the effects of mixtures of hydrogen and compressed natural gas (CNG) on a spark ignition engine are numerically considered. This article presents the results of a direct-injection engine using methane–hy...
متن کاملEvaluate the effect of biodiesel and EGR system on diesel engine emissions
Vehicle Emission is one of the main causes of environmental damage. Vehicle engines produce carbon dioxide (CO2), hydrocarbon (HC), Nitrogen oxides (NOx) and many other harmful substances. An investigation was conducted using a compression-ignition engine fuelled with different ratios of blends of diesel and biodiesel at different EGR rates. The effects of different ratios of fuel blends and EG...
متن کاملEffect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملInvestigation of the Effects of JP-4 Addition to Biodiesel-Diesel Blends on the Performance Characteristics of a Diesel Engine
In this study, the effects of JP-4-biodiesel-diesel blends and engine operating parameters on the performance characteristics of a diesel engine were investigated. The experimental tests were performed on a four-cylinder DI diesel engine. The Mixture-RSM method was applied to develop the mathematical models based on the experimental data. The results showed that the fitted models could be prope...
متن کاملInfluence of Biodiesel from Egyptian Used Cooking Oils on Performance and Emissions of Diesel Engine
Due to diminishing petroleum reserves and the environmental negative effects of exhaust gases from diesel engines, alternative fuels for diesel engines are becoming increasingly important Egyptian waste cooking oils have special specifications because it expose to high temperatures during use for long hours. In the present experimental study, the performance and emissions of a four strokes, sin...
متن کامل